Spinal Muscular Atrophy Carrier Screening for the Obstetric Provider

Maeve K. Hopkins, MD, Jeffery A. Kuller, MD, and Lorraine Dugoff, MD

Learning Objectives: After participating in this continuing professional development activity, the provider should be better able to:
1. Identify patient populations appropriate for spinal muscular atrophy (SMA) screening.
2. Distinguish the various phenotypes of SMA and interpret SMA carrier screening test results.
3. Plan patient-specific counseling regarding residual risk based on results of SMA carrier screening.

Key Words: Carrier screening, Genetic screening, Spinal muscular atrophy

Spinal muscular atrophy (SMA) is a neuromuscular disease resulting in the degeneration of the anterior horn cells of the spinal column. This can lead to progressive proximal muscle weakness. SMA is caused by a mutation in the survival motor neuron gene (SMN1). This gene is responsible for the production of a protein essential to motor neuron function. The estimated incidence of SMA is around 1 in 10,000 live births. SMA is estimated to be the second most common fatal autosomal recessive disorder after cystic fibrosis, with a carrier frequency ranging from 1/40 to 1/60. The phenotype of SMA is highly variable. SMA is classified into 5 phenotypes based on maximum motor function achieved and age at onset of symptoms.

SMA involves the survival motor neuron 1, or SMN1 gene, on the q arm of chromosome 5. SMA inheritance is described as autosomal recessive; however, the genetics are complex and can be affected by gene conversion, de novo mutations, and the concept of the “2+0” carrier.

SMA, Type 0-IV

Because the phenotype varies significantly, 5 types of SMA have been characterized. Type 0 describes the most severe, in utero type of SMA, with life expectancy only until around 6 months of life. Type I, or Werdnig-Hoffmann, is the most common type, with symptomatic onset before 6 months and death from respiratory failure within the first 2 years of life. Type II SMA has typical onset before age 2 and a lifespan that varies from 2 years of age to the third decade of life. Type III, or Kugelberg-Welander, has onset after 18 months of life and a variable symptom profile, with many patients having normal life expectancies. Type IV refers to adult-onset disease. Table 1 demonstrates type
Genetics of SMN1 and SMN2

In 1995, the SMN1 gene on chromosome 5q13 was linked to SMA. Near the centromere of chromosome 5 and downstream of SMN1 is the SMN2 (survival motor neuron 2) gene. Most cases (around 94%) of SMA are caused by the homozygous deletion of the SMN1 gene. The other 6% of cases are compound heterozygotes with one deleted copy of the SMN1 gene and a point mutation in the other copy, or patients affected by de novo mutations. Individuals in the general population normally have 2 SMN1 gene copies, but may have up to 4. Copy numbers of SMN2 gene in the population range from zero to 3. Approximately 80% to 90% of SMN protein is produced in response to the SMN1 gene. The remaining comes from SMN2. Therefore, those with homozygous SMN1 deletions may still produce functional SMN protein through SMN2. A homozygous deletion of SMN2 does not lead to SMA when at least one SMN1 gene is present. Gene conversion between SMN1 and SMN2 genes can randomly occur in the gamete, further complicating the genetics of SMA. In addition, the number of SMN2 genes can affect the phenotype in those with homozygous deletions of SMN1.

However, the SMN2 copy number with homozygous SMN1 deletion is not diagnostic for the SMA phenotype. Because of the complex genetics and limitations in the molecular diagnostic assays available, prediction of phenotype in affected fetuses is limited. If a patient is identified as

<table>
<thead>
<tr>
<th>Type</th>
<th>Age at Onset</th>
<th>Clinical Characteristics</th>
<th>Highest Motor Milestone</th>
<th>Life expectancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Fetal</td>
<td>Contractures</td>
<td>None</td>
<td><6 mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Absent movement, reflexes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Require mechanical ventilation at birth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0–6 mo</td>
<td>Hypotonic</td>
<td>Never rolls or sits independently</td>
<td><2 yr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weakness</td>
<td>Sits with support</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feeding difficulty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>6–18 mo</td>
<td>Hypotonic</td>
<td>Sits independently</td>
<td>Around 20 yr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nonambulatory</td>
<td>May stand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proximal weakness</td>
<td>Does not walk independently</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>>18 mo</td>
<td>Ambulates independently</td>
<td>Stand</td>
<td>Life expectancy usually not affected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Declines gross motor function in childhood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Second or third decade</td>
<td>Onset in adult life</td>
<td>Walks independently in adulthood</td>
<td>Life expectancy usually not affected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Develops difficulty with gross motor function</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a carrier for SMA, the subtype cannot be determined if there is no family history of the disorder. Therefore, prenatal care providers should have a basic understanding of carrier screening results, residual risk, and genetics of SMA. They should also know when to refer patients to genetic counselors or maternal-fetal medicine given the complex counseling required.

Carrier Screening

Current society guidelines recommend screening preconception or in pregnancy for SMA carrier status. The American College of Medical Genetics and Genomics (ACMG) recommended SMA screening for all patients preconception or early in pregnancy in 2008. In 2017, the American College of Obstetricians and Gynecologists (ACOG) recommended that providers offer SMA screening to all patients who are pregnant or considering pregnancy. In addition, the ACOG recommends that, in patients with a family history of SMA, molecular testing of the affected individual and carrier testing of that parent be reviewed before screening. If those results are not available, the ACOG recommends testing of the low-risk partner.

SMA disease can be diagnosed based on homozygous deletion of SMN1 in patients with symptoms. However, carrier testing requires a quantitative polymerase chain reaction assay that gives a measure of SMN1 copy number. Detection of a single copy of the SMN1 gene indicates a carrier. However, the location or configuration of the gene can be relevant, as some patients (approximately 3%-4%) have 2 SMN1 copies on the same chromosome (in cis configuration) and no copies on the other. This technically makes them carriers as one chromosome is missing the SMN1 allele. Although rare, the typical carrier testing assay does not identify these carriers, who have a 50% chance of passing on the chromosome with a single inactivated SMN1 gene and could have an affected offspring. These “2+0” carriers may occur more frequently in certain ethnic groups, which affect residual risk. Some laboratories offer testing for a variant gene, which is associated with an increased risk of both copies of SMN1 being in the “cis” configuration.

Residual Risk

Residual risk is the chance that a patient may still be a carrier despite having a negative screening test. Residual risk remains, even in patients who have 2 or 3 copies of SMN1 on carrier screening. Table 2 estimates the carrier risks for patients from different ethnic groups in individuals with 2 copies of SMN1 (residual risk is even lower in patients with 3 copies of SMN1, and is often reported on results of carrier screening). Because the “2+0” carriers are more commonly of African American ancestry, the carrier detection is lower in this group and residual risk is higher with SMN1 carrier testing. If a patient’s screening results return with 2 copies of the SMN1 gene, they are unlikely to be an SMA carrier. However, patients should be informed of the residual carrier risk based on ethnicity.

Some laboratories may include results on an SMN1 variant gene. Approximately one-fifth of “2+0” SMA carriers carry one or both identified variants when SMN1 copies were in cis configuration. Although absence of these linked variants does not exclude “2+0” carrier status, the presence of the variant does increase residual risk (due to the increased likelihood of “2+0” carrier status) in individuals with 2 SMN1 copies. Laboratory results that indicate 2 copies of the SMN1 gene with a variant should report the residual risk. Patients should be counseled regarding their residual risk despite having 2 SMN1 copies.

If a patient’s screening results indicate one copy of SMN1 (diagnosing them as a carrier), the patient should be referred for genetic counseling, and encouraged to bring her partner if possible. If a patient has only one copy of SMN1, the partner can be tested, presuming that paternity is certain. If the partner carries 2 copies, the residual risk is low of having an affected offspring. Results and risks should be discussed by certified genetic counselors. If the partner has only one copy of SMN1 or is unavailable for testing, prenatal genetic diagnosis can be offered with chorionic villus sampling or amniocentesis. Postnatal testing is also an option. In addition, several states have incorporated SMA into their newborn genetic screen.

Emerging Therapies for SMA

Both the coding regions and protein products of SMN1 and SMN2 have been characterized. Since then, therapies to target the mechanism of SMA have been developed. In 2016, the FDA approved nusinersen (Spinraza). This medication is an antisense oligonucleotide that promotes production of SMN protein from the pseudogene SMN2. Spinraza is administered intrathecally with 4 loading doses in the first month followed by maintenance therapy every 4 months. This medication prolongs survival in type 1 SMA and increases the motor milestones met by patients with type 2 SMA. In addition to the intrathecal therapy, an orally deliverable medication, risdiplam (Evrysdi) has been approved for therapy for SMA.

In addition to SMN-targeted therapy, medications for upregulation of muscle growth, RNA therapy, neuroprotection through mitochondria, and gene modification of SMN are being investigated. However, these therapies are...
Improvement in therapy, life expectancy, and quality of life with emerging therapies will continue to inform prenatal genetic counseling.

Additional Considerations

- Some laboratories offer SMA screening within expanded carrier panel screening.
- Some (but not all) laboratories offer complete SMA testing, including reflex sequencing for SMN2 copy number analysis in carriers of SMA.
- Any patient with a family history of SMA or known carriers should be referred to a certified genetic counselor.

Summary

SMA is an autosomal recessive disorder caused by mutation or deletion of 2 SMN1 genes. The disease causes significant neonatal and infant morbidity and mortality. Therefore, the ACOG and the ACMG recommend offering carrier screening to all pregnant patients or patients considering pregnancy. Because the inheritance of SMA can be complex, prenatal care providers should appropriately refer patients to certified genetic counselors if a patient tests positive as a carrier. If carrier screening is negative, providers should understand the residual risk and inform the patient of residual risk.

REFERENCES

Continuing Professional Development Quiz: Volume 41, Number 16

To earn CME credit, you must read the article and complete the quiz and evaluation on the enclosed answer form, answering at least seven of the 10 quiz questions correctly. Select the best answer and use a blue or black pen to completely fill in the corresponding box on the enclosed answer form. Please indicate any name and address changes directly on the answer form. If your name and address do not appear on the answer form, please print that information in the blank space at the top left of the page. Make a photocopy of the completed answer form for your own files and mail the original answer form in the enclosed postage-paid business reply envelope. Your answer form must be received by Lippincott CME Institute Inc. by November 14, 2023. Only two entries will be considered for credit. For more information, call (800) 638-3030.

Online CME quiz instructions: To take the quiz online, log on to your account at www.topicsinobgyn.com, and click on the “CME” tab at the top of the page. Then click on “Access the CME activity for this newsletter,” which will take you to the log-in page for http://cme.lww.com. Enter your username and password. Follow the instructions on the site. You may print your official certificate immediately. Please note: Lippincott CME Institute, Inc., will not mail certificates to online participants. Online quizzes expire on the due date.

To earn NCPD credit, you must take the quiz online. Go to www.nursingcenter.com, click on Continuing Education on the toolbar at the top, select Browse Journals, and select Topics in Obstetrics & Gynecology. Log-in (upper right-hand corner) to enter your username and password. First-time users must register. As a subscriber benefit, nurses can earn contact hours when taking CPD activities from Topics in Obstetrics & Gynecology for free. You must enter your subscription number, preceded by LWW, in your registration profile, where there is a field for Link to my subscription. The 100% discount is applied when payment is requested. Non-subscribers pay a $49.00 fee to earn ANCC contact hours for this activity. After log-in, locate and click on the CPD activity in which you are interested. There is only one correct answer for each question. A passing score for this test is 7 correct answers. If you fail, you have the option of taking the test again. When you pass, you can print your certificate of earned contact hours and access the answer key. For questions, contact Lippincott Professional Development: 1-800-787-8985. The registration deadline for NCPD credit is September 6, 2024.

1. A 29-year-old, nulliparous patient presents for preconception counseling due to her history of preexisting diabetes. She reports no known family history of inherited conditions. Which one of the following is appropriate to offer as preconception genetic screening?
 A. noninvasive prenatal screening
 B. chorionic villus sampling
 C. SMA carrier screening
 D. do not recommend genetic screening as part of a preconception visit

2. A 25-year-old G2P1001 woman presents at 29 weeks for a prenatal visit. She has 1 healthy child, age 2 years. She had previously declined any genetic screening but today reports that her brother was recently diagnosed with type IV SMA. Which one is the most appropriate next step?
 A. amniocentesis
 B. refer for genetic counseling
 C. growth ultrasound
 D. induction of labor
 E. no additional workup is indicated

3. A patient who is 14 weeks' pregnant had recent carrier screening for SMA. Results showed that she has 3 copies of the SMN1 gene. On the basis of these results, which one of the following statements represents appropriate counseling for this patient?
 A. The patient is extremely unlikely to have offspring affected by SMA; however, a very small residual risk exists in all cases.
 B. The patient is a carrier of SMA and should be referred for genetic counseling.
 C. No counseling is required for SMA carrier screening results.
 D. The patient should be referred for amniocentesis.
 E. SMA carrier screening is not indicated in these circumstances.

4. A 35-year-old G1 woman at 11 weeks’ gestation elects expanded carrier screening. The results indicate that she has 1 copy of the SMN1 gene. Which one of the following is the appropriate next step?
 A. no further evaluation
 B. chorionic villus sampling
 C. parental karyotypes
 D. referral to a certified genetic counselor, preferably with the patient's partner

5. When asked whether she is interested in carrier screening for SMA, a patient asks how a positive screening result would affect her baby. Which one of the following is the appropriate response?
 A. The distal extremities will be contracted and immobile.
 B. The infant will have low set ears and abnormal face.
 C. The condition affects the spinal cord and can lead to progressive proximal weakness; however, affected individuals have variable presentation.
 D. Refer the patient to a certified genetic counselor for a response.

6. You offer SMA carrier screening to a patient at her first prenatal visit at 10 weeks of pregnancy. She asks whether the testing can wait until after the baby is born. Which one of the following is the appropriate answer?
 A. No, there are no tests for SMA for newborns.
 B. Yes, many newborn screens include SMA testing, although you should confirm with the pediatric provider.
 C. Babies are only screened if born hypotonic.
 D. Refer the patient to a certified genetic counselor for a response.

7. A patient has a prior child affected by SMA type 0. She unexpectedly became pregnant with the same partner, and is approximately 12 weeks’ gestation. Which one of the following is the appropriate next step?
 A. refer to a certified genetic counselor and maternal-fetal medicine to discuss diagnostic testing
 B. routine prenatal care
 C. expanded carrier screening for the patient and her partner
 D. noninvasive prenatal screening

8. You are counseling a patient regarding SMA carrier screening, and she asks why screening should be performed if there is no treatment for SMA. Which one of the following is the appropriate response?
 A. There is no treatment for SMA, so screening is for planning purposes only.
 B. There are new and emerging therapies that improve survival and prognosis for SMA.
 C. Correct, you do not need screening.
 D. Refer to a certified genetic counselor for a response.
9. Some patients carry the SMN1 gene on the same chromosome ("cis" configuration). Approximately how many patients have the SMN1 gene on the same chromosome?
 A. 1 in 10,000
 B. 1 in 100
 C. 1 in 50
 D. 1 in 5

10. In counseling a patient regarding the SMN1 gene in "cis" configuration, or on the same chromosome, which one of the following statements is true?
 A. There is an advantage to having both SMN1 on the same chromosome.
 B. The offspring will automatically be affected by SMA.
 C. There is a 50% chance of passing on the chromosome with a single inactivated SMN1 gene, which could result in an affected offspring, depending on the partner's carrier status.
 D. There is no correlation between "cis" and "trans" configuration and inheritance of SMN1.