Major Histopathologic Diagnoses of Chronic Wounds

George K. Turi, MD • Assistant Director of Pathology • Winthrop University Hospital • Mineola, New York • Assistant Professor of Pathology • Stony Brook University School of Medicine • Stony Brook, New York
Virginia Donovan, MD • Chair and Program Director • Department of Pathology • Winthrop University Hospital • Mineola, New York • Stony Brook University School of Medicine • Stony Brook, New York
Julie DiGregorio, CCRP • Supervisor • Research & Clinical Trials • Winthrop University Hospital • Mineola, New York
Theresa M. Criscielli, EdD, RN, CNOR • Assistant Vice President • Administration • Perioperative/Procedural Department • Winthrop University Hospital • Mineola, New York
Benjamin Kashan, MD • General Surgery Resident • Nassau University Medical Center • Oceanside, New York
Stephan Barrientos, MD • Chief General Surgery Resident • Vidant Medical Center/Brody School of Medicine • Greenville, North Carolina
Jose Ramon Balingcongan, PA-C • Physician Assistant • Division of Wound Healing and Regenerative Medicine, Department of Surgery • Winthrop University Hospital • Mineola, New York
Scott Gorenstein, MD, FACEP • Clinical Director and Clinical Assistant Professor • Department of Surgery • Winthrop University Hospital • Mineola, New York
Harold Brem, MD, FACS • Professor • Department of Surgery • Stony Brook University School of Medicine • Chief • Division of Wound Healing & Regenerative Medicine • Winthrop University Hospital • Mineola, New York

The authors have disclosed that research reported in this article was supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under award number K24DK090135. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

All authors, staff, and planners, including spouses/partners (if any), in any position to control the content of this CME activity have disclosed that they have no financial relationships with, or financial interests in, any commercial companies pertaining to this educational activity.

To earn CE credit, you must read the CE article and complete the quiz and evaluation online, answering at least 13 of the 18 questions correctly.

This continuing educational activity will expire for physicians on August 31, 2017, and for nurses on August 31, 2018.

All tests are now online only; take the test at http://cme.lww.com for physicians and www.nursingcenter.com for nurses. Complete CE/CME information is on the last page of this article.

PURPOSE:
To clarify the histopathology of acute osteomyelitis, chronic osteomyelitis, primary vasculitis, and secondary-type vasculitis.
The presence of a chronic wound can result in significant morbidity/mortality. Understanding the pathological alterations of wound tissue that are refractory to standard wound therapy is essential for effective wound management and healing. The authors describe 4 wound etiologies, specifically, acute osteomyelitis, chronic osteomyelitis, primary vasculitis, and secondary-type vasculitis.

ACUTE OSTEOMYELITIS

Acute osteomyelitis is defined as bone tissue with a predominance of polymorphonuclear leukocytes, evidence of osteoclast bone resorption with scalloping of the cortical bone edges, and bone detritus. Chronic osteomyelitis is defined as bone tissue with a significant amount of fibrosis surrounding devitalized tissue and heavy infiltration of lymphocytes and plasma cells. Primary-type vasculitis is defined primarily as inflammation and necrosis of blood vessel walls. In cutaneous lesions of granulomatosis with polyangiitis, ulceration with numerous inflammatory granulomas is seen in the papillary dermis. Secondary vasculitis is defined by vessel wall infiltration by inflammatory cells and fibrinoid necrosis of the small vessel wall.

CONCLUSIONS: Pathologies of these 4 types of wounds can complicate standard algorithms designed for diagnosis and treatment, and accurate diagnosis through histopathologic analysis can help tailor targeted treatment.

KEYWORDS: granulomatosis with polyangiitis, histopathology, vasculitis, wound care

ADV SKIN WOUND CARE 2016;29:376–82.
Proper analysis and diagnosis of a wound’s histopathology are 2 of the most significant challenges a clinician faces when developing an effective treatment plan for a patient’s wound. A lack of understanding of the mechanisms and pathogenesis of a chronic wound has the potential to lead to unnecessary suffering and even to amputation or death. This article seeks to uncover the pathological mechanisms underlying a majority of chronic wounds, so that improved treatments can be developed. If accurate and consistent diagnoses can be made across hospital settings, the potentially severe implications of misinterpreting histopathologic reports can be avoided and treatment greatly improved.

METHODS

With institutional review board approval, the authors conducted a retrospective review of 1392 surgical cases performed during a 24-month period at a tertiary care hospital in Mineola, New York. Debridements were based on standard indications such as nonhealing deep and superficial wounds, and soft tissue infection involving multiple sites, including lower extremity, sacrum, hip/pelvis, trunk, perineum, and buttocks. Minor cases not involving true acute or chronic wounds were excluded.

The tissue samples obtained from sharp debridement were submitted to the pathology laboratory for histopathologic evaluation. Tissue specimens were placed in 10% neutral phosphate-buffered formalin and were sampled with representative tissue submission. Hematoxylin-eosin slides were prepared from formalin-fixed, paraffin-embedded specimens.

RESULTS

The 4 major diagnoses include acute osteomyelitis; chronic osteomyelitis; primary-type vasculitides, specifically granulomatosis with polyangiitis (GPA); and secondary-type vasculitis. Acute osteomyelitis is defined histologically as bone tissue with a predominance of polymorphonuclear leukocytes, evidence of osteoclast bone resorption with scalloping of the cortical bone edges, and evidence of bone detritus. Chronic osteomyelitis is defined histologically as bone tissue that has a significant amount of fibrosis surrounding devitalized tissue, accompanied by heavy infiltration of lymphocytes and plasma cells with few polymorphonuclear neutrophilic leukocytes. A diagnosis of vasculitis should be considered in the context of other histologic findings and may be a secondary event in the setting of other pathological findings such as ulcer, infection, or trauma.

In primary-type vasculitis, injury to the vessel wall is an essential finding. It is defined histologically as inflammation and necrosis of blood vessel walls associated with various pathological findings depending on vessel size and stage of disease.

In cutaneous lesions of GPA, ulceration with numerous inflammatory granulomas is seen in the papillary dermis. Granulomas primarily comprise plasma cell and lymphocytic infiltrates, as well as multinucleated giant cells, such as histiocytes.

Secondary vasculitis of small and muscular vessels includes the following 2 histologic criteria: vessel wall infiltration by inflammatory cells and fibrinoid necrosis of the small vessel wall.

DISCUSSION

Acute Osteomyelitis

Osteomyelitis is defined histologically as acute or chronic inflammation in bone tissue, confirmation of which is important for clinical diagnosis. Historically, osteomyelitis has been clinically categorized as acute or chronic in nature. The characterization of osteomyelitis is now predicated on pathological description and diagnosis as opposed to the clinical onset of disease. Tissue culture, specificity, and histologic findings in bone tissue of osteomyelitis specimens are crucial to treatment. Although clinical signs and symptoms may heighten clinical suspicion of osteomyelitis, the criterion standard for diagnosis is bone biopsy and microbiological analysis of bone culture. Clinical signs may include localized bone pain, erythema, and drainage around the affected area.

To date, only histology from bone biopsy and microbiologic analysis with bone culture are considered definitive for accurate diagnosis of osteomyelitis. The diagnostic sensitivity of histologic examination for the presence of osteomyelitis has been reported as high as 95%, with a diagnostic specificity of 99%. There were several key histologic features identified in all patients with acute osteomyelitis. Polymorphonuclear leukocytes were the predominant inflammatory cell type identified in these specimens. In many cases, there was evidence of osteoclast bone resorption with scalloping of the cortical bone edges (Figure 1). In addition, there was evidence of bone detritus as indicated by necrotic fragments of cortical bone in the bone marrow (Figure 2).

Chronic Osteomyelitis

Establishing a definitive diagnosis of chronic versus acute osteomyelitis in a wound, based on pathological evaluation, guides clinical decisions. Chronic osteomyelitis may be refractory to medical therapy when compared with acute osteomyelitis because of a more complex colonizing flora and may be treated with antibiotics and surgical debridement of wound soft tissue and bone. Empiric antibiotics are not usually recommended. Although the literature is conflicted, many authors agree that without adequate debridement chronic osteomyelitis does not respond optimally to antibiotic regimens alone. Even with thorough debridement, patients with osteomyelitis may be refractory to medical treatment and require adjunctive therapy.
In chronic osteomyelitis, draining sinus tracts, limb deformity, joint instability, and local signs of impaired vascularity, range of motion, and neurologic status are commonly seen.

Necrotic bone was identified histologically as bone tissue with loss of greater than 50% of osteocyte nuclei from osteocyte lacunae. In the specimens with chronic osteomyelitis, there was a significant amount of fibrosis surrounding devitalized tissue. Heavy infiltration of lymphocytes and plasma cells with few polymorphonuclear leukocytes was noted.

PRIMARY VASCULITIS

Granulomatosis with Polyangiitis

In contrast to secondary-type vasculitis, GPA (formerly known as Wegener granulomatosis) is a rare, autoimmune small vessel vasculitis that predominately affects the upper and lower respiratory tracts, kidney, eye, joints, skin, and neural tissues. Symptomatology is predominately respiratory, such as cough, hemoptysis, and sinusitis; and may include renal symptoms (hallmark of generalized disease). A large percentage of patients, however, have cutaneous lesions as their initial presenting symptom. According to the Chapel Hill Consensus Conference, establishing the diagnosis of GPA requires (1) granulomatous inflammation involving the respiratory tract and (2) vasculitis of small to medium blood vessels.

One patient was identified as having a lesion secondary to GPA located on the neck. Pathology from the patient’s initial debridement revealed cutaneous ulceration with numerous inflammatory granulomas in the papillary dermis. The granulomas coalesced around a dermal vessel with the greatest confluence near the dermal vascular plexus. The granulomas were primarily composed of plasma cells and lymphocyte infiltrates, as well as multinucleated giant cells, such as histiocytes (Figure 3). There was extensive vasculitis, but no fibrinoid necrosis noted in the wall of the vessels (Figure 4).

Secondary-Type Vasculitis

The skin is the most common primary organ for vasculitis. Etiologies of secondary-type vasculitides are vast, including infectious diseases, neoplastic causes, or drug-induced or inflammatory diseases of unknown etiology. Histologically, only a few patterns of vascular inflammation are seen under the microscope. The clinical manifestations of secondary-type vasculitis depend on 3 core criteria: location, type, and size of the affected vessel. Generally, the secondary-type vasculitides affect smaller-caliber vessels, such as capillaries and arterioles less than 0.1 mm, and intraorgan muscular small arteries and venules. Clinical histopathologic criteria for small vessel vasculitis and muscular vessel vasculitis must include the following 2 criteria: perivascular infiltration of inflammatory cells and fibrinoid necrosis of the small vessel wall (Figures 5 to 7).

CONCLUSIONS

In this article, the authors describe the pathological findings of 4 types of wounds that may complicate standard algorithms.
designed for diagnosis and treatment of complicated wounds, specifically acute osteomyelitis, chronic osteomyelitis, primary vasculitis (GPA), and secondary-type vasculitis. The afore-

mentioned diagnoses are less common and often difficult to diagnose. The authors believe that a thorough history and physical examination, multimodality specialty involvement, and treatments, along with accurate diagnosis through histopathologic analysis of wound biopsy specimens from routine debridements, can help tailor targeted treatment regimens.
Although clinical signs and symptoms may heighten clinical suspicion of osteomyelitis, tissue culture, specificity, and histologic findings in bone tissue are crucial to treatment.

Figure 7.
ULCER BED: SECONDARY-TYPE VASCULITIS

Image shows secondary-type vasculitis, neutrophilic infiltration of blood vessel walls (arrowheads) (original magnification x 400).

PRACTICE PEARLS

- Knowledge of histopathologic alterations present in wound tissue is fundamental to successful debridement and healing. Pathologic evaluation can help distinguish healing from a non-healing wound edge; however for chronic wounds refractory to standard debridement and treatment protocols, a detailed analysis of wound edge histopathology may be necessary to guide therapeutic interventions and debridement.

- Although clinical signs and symptoms may heighten clinical suspicion of osteomyelitis, tissue culture, specificity, and histologic findings in bone tissue are crucial to treatment.

- A thorough history and physical examination, multimodal specialty involvement, and treatments, along with accurate diagnosis through histopathologic analysis of wound biopsies from routine debridements, can help tailor treatment regimens.

REFERENCES

For more than 139 additional continuing education articles related to Skin and Wound Care topics, go to NursingCenter.com/CE.